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Two kinds of alkoxo-bridged Ti(IV) polynuclear complexes
were selectively obtained depending on reaction conditions.
Crystal structures of the dinuclear complex [Ti2(�-dptaO)2]

2�

and the novel octanuclear complex [{Ti4(�-O)4}2(�-
dptaO)4]

4� (H4dptaOH = 2-hydroxypropane-1,3-diamine-N,N,
N0,N0-tetraacetic acid) were determined. The obtained com-
plexes were spectrochemically characterized.

In order to prepare polynuclear complexes, many polynu-
cleating ligands have been used for a long time. For example,
2-hydroxypropane-1,3-diamine-N,N,N0,N0-tetraacetic acid (H4-
dptaOH) is one of the most typical dinucleating ligands. In
V(III),1 Mn(II/III),2 Fe(III),3 Cu(II),4 and Ru(III)5 complexes
synthesized as biological model compounds or metal-substituted
derivatives, two hexacoordinated metal centers are alkoxo-
bridged by one deprotonated ligand (dptaO) and carboxylate col-
igand(s). On the other hand, a dinuclear V(III) complex [V2(�-
HdptaO)2]

2� without coligand(s) has heptacoordinated V(III)
ions.6 A tetranuclear V(IV/V) complex [V4O4(�-O)2(�-
dptaO)2]

4� containing hexacoordinated metal ions and oxo-
bridges was also reported.7 Moreover, we have reported dinu-
clear Ln(III) complexes [Ln2(�-dptaO)2]

4�; the stereochemical-
ly characterized Yb(III) complex contains octacoordinated
Yb(III) ions.8 Thus, early transition metal ions including Ln(III)
ions can take various coordination numbers and geometries.
Ti(IV) ion, which is one of the early transition metal ion, also in-
dicates complicated stereochemistry due to the formation of
many kinds of oxotitanium clusters. Among them, various Ti4O4

clusters have been recognized.9 From the reaction using Ti(IV)
ion and H4dptaOH, not only a dinuclear complex, which resem-
bles the Yb(III) complex, but also an octanuclear complex con-
taining a unique cubic-type core were formed. Here we report
crystal structures of the selectively obtained two types of al-
koxo-bridged Ti(IV) polynuclear complexes. A similar dinuclear
complex containing octacoordinated Zr(IV) ions, which has
been reported quite recently, is formed regardless of pH of
solution.10

Chemical oxidation of an acidic aqueous solution containing
TiCl3, H4dptaOH, and Na2CO3 produced two types of colorless
crystals, depending on pH of reaction mixture.11 The block-
shaped crystal obtained from pale yellow solution (pH � 5) is
a sandwich-type dinuclear Ti(IV) complex, Na2[Ti2(�-dptaO)2]
(Figure 1).12 Two Ti(IV) ions are alkoxo-bridged by two dptaO
ligands. Each Ti(IV) ion is coordinated by two amino N atoms,
four carboxylato O atoms (Oca), and two bridging alkoxo O
atoms (Oal), forming an octacoordinated structure. This geome-
try is similar to those of Yb(III) and Zr(IV) complexes.8,10 The
Ti–Oca (av 2.033(2) �A) and Ti–N (av 2.385(2) �A) distances in

[Ti2(�-dptaO)2]
2� are longer than the Ti–Oca (av 1.953(2) �A)

and Ti–N (av 2.303(2) �A) distances in the heptacoordinated com-
plex [Ti(edta)(H2O)], respectively.

13 Each Na(I) ion binds to the
Oca atoms of the complex anions, forming a three-dimensional
network in the crystal. The Na–Oca distances (av 2.451(4) �A)
are typical for polyaminopolycarboxylato complexes.10

The plate-shaped crystal obtained from colorless solution
(pH � 3) is an octanuclear Ti(IV) complex, Na2H2[{Ti4(�-
O)4}2(�-dptaO)4]. Since the crystals of Na(I) salt decay easily,

14

the corresponding crystals of Cs(I) salt were obtained by using
Cs2CO3 instead of Na2CO3;

15 the complex anion of the Cs(I) salt
is shown in Figure 2.16 Two Ti4O4 eight-membered rings are al-
koxo-bridged by four dptaO ligands, forming a novel octanu-
clear structure. This is the first example of the complex with a
cubic-type {Ti4(�-oxo)4}2(�-alkoxo)4 core, although some
complexes with a Ti8(�-oxo)12 core are known.17 Each Ti(IV)
ion has a distorted octahedral geometry formed by coordination
of one amino N, two Oca, one Oal, and two oxo O atoms (Oox).
The oxo-bridges are not symmetric; a short Ti–Oox distance is
av 1.737(8) �A and a longer one is av 1.896(8) �A. Since the N
atom occupies trans position to the short Ti–Oox bond, there is
a pseudo four fold axis through the center of two Ti4O4 rings.
This behavior is observed in the complex with the cyclic Ti4O4

unit and nitrilotriacetate ligands.18 The Ti–Oal bond (av 2.032(7)
�A) is longer than the Ti–Oox bond. The Ti–Oca bond trans to Oox

(av 2.029(9) �A) is slightly longer than that trans to Oal (av
1.991(7) �A), reflecting the difference of Ti–Oox and Ti–Oal dis-
tances. The Ti–N distances (av 2.28(1) �A) in [{Ti4(�-O)4}2-
(�-dptaO)4]

4� are significantly shorter than those in [Ti2(�-
dptaO)2]

2�. The Ti–Oox–Ti (av 161.5(5)�) and Oox–Ti–Oox (av
102.7(4)�) angles are comparable with the other cyclic Ti4O4

units.18 Although the Ti–Oal–Ti angles (av 127.3(4)
�) imply con-

traction of the Ti8O12 cube along the four fold axis, adjacent
Ti���Ti distances via Oal (av 3.641(2) �A) are somewhat longer

Figure 1. A structure of [Ti2(�-dptaO)2]
2�. Ti���Ti, 3.3438(6); Ti1–

O1, 1.969(2); Ti1–O1�, 2.086(2); Ti1–O2, 2.022(2); Ti1–O4,
2.051(2); Ti–O6, 2.032(2); Ti1–O8, 2.027(2); Ti1–N1, 2.404(2);
Ti1–N2, 2.365(2) �A. � Symmetry code: �xþ 1=2, �yþ 1=2, z.
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than those via Oox (av 3.586(3) �A). Short intramolecular Oox���
Oox contacts, which are observed in the tetranuclear Fe(III) com-
plex [{Fe2(�-O)(�-CO3)}2(�-dptaO)2]

6�,19 are not observed in
the present complex. The Oca atoms bind to Cs(I) ions, i.e., the
{Ti4(�-oxo)4}2(�-alkoxo)4 cube is capped by two Cs(I) ions.
Further, each Cs(I) ion binds to neighboring complexes, forming
a two-dimensional network in the crystal. The Cs–Oca distances
(av 3.27(2) �A) are also typical.10 The observed molar conductiv-
ity in H2O

11,15 of the Na(I) salt is fairly in agreement with those
of 4:1 electrolytes.8 Considering the charge balance, the com-
plex anion seems to be tetravalent and two hydrogen ions exist.

Only [{Ti4(�-O)4}2(�-dptaO)4]
4� indicated an IR band for

oxo-bridges. On the other hand, [Ti2(�-dptaO)2]
2� indicated ob-

viously splitting IR bands for �s(COO). The 1HNMR spectrum
for [Ti2(�-dptaO)2]

2� exhibits twelve sets of CH2 signals,
whereas that for [{Ti4(�-O)4}2(�-dptaO)4]

4� exhibits six sets
of CH2 signals. These support that the C2 symmetry of
[Ti2(�-dptaO)2]

2� and the C4h symmetry of [{Ti4(�-O)4}2(�-
dptaO)4]

4� are retained in solution. In the cyclic voltammetry,
only [Ti2(�-dptaO)2]

2� showed quasi-reversible redox waves,
which may be due to TiIV/III processes, in a negative potential
region. This means the oxidation state of the Ti(IV) ion is highly
stabilized in the cubic-type {Ti4(�-oxo)4}2(�-alkoxo)4 core.
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